Chapter 3

Laplace Transforms

3.1 Transformation from ¢ to s

Laplace transformation £{.} is used to map time domain functions f(¢) into
s domain functions F'(s). This mapping isC{f(¢t)} : f(t) — F(s) is defined
by

Pls) = LW} = [ s0ea (3.1)

3.1.1 Common Laplace Transforms

Lets find out Laplace transforms of the most frequently encountered time
functions: unit impulse 6(¢), unit step us(t), time exponent t", exponential
decay e, and cosin coswt

Unit Impulse, 6(t)

Unit impulse is illustrated in Fig.3.1, and defined as follows

0 Vt € (—00,07)
5(t) = { fEét)y=1 Wvte[o,0%] (3.2)
0 Vt € (07, +00)

Lets use Laplace transform (3.1) on unit impulse

L{5(t)} = /0 T s()e e (3.3)

However, according to definition (3.2) this integration produces zero value

except for the infinitesimal time interval (0=, 0%), within which e=%¢ = ¢=%0 =

1. Therefore (3.3) simplifies to
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Figure 3.1: Delta function

£ = | " 501 ar (3.4)

According to definition (3.2) the value of this integral is unity. Therefore we
have derived the Laplace transform of the unit impulse as

{5t} =1 (3.5)

Unit Step u(t)

Unit step is illustrated in Fig.3.2, and defined as follows

Figure 3.2: Unit step

0 Vte (—o0,07)
u(t) :{ 1 Vit e[0,+00) (3.6)

Lets use Laplace transform (3.1) on unit step (3.6)

Llu(t)} = /0 T ut)etdt (3.7)
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According to definition (3.6), ugs(f) = 1 within the limits of integration,

therefore

Exponential function, e

L{u(t)} = /OOO Le *dt
1

—st|oco
Se 0

_ ! (3.8)

S

at

According to (3.1), the Laplace transform of an exponential function is

L{e"} = /oo e™e*dl
0

= / e (=)t gy
0

Cosine Function, coswt

The equivalent expression of coswt

is used in (3.1) as follows

L{coswt}

1
— —(s—a)t|oc
s—ae 1o
= 1 (s>0) (39)
= 3 (s>a )
1 jwt 1 —jwt
coswt:§63 +5e J (3.10)

/oo [lejwt + lejwt} efstdt
0

$2 + w?

= N = N =
1 T 1T

2 2
oo X oo .
[Tt | e_(sﬂ‘”)tdt}
0 0
o 1 : 6—(s—jw)t|oo o 1 : 6—(s+jw)t|go]
s —Jw S+ Jw

1 1 ]
— + .
s —Jw s+ Jw
i (3.11)
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Sine Function, sinwt
The equivalent expression for sin wt
1

1 . ;
sinwt = z—jej"’t - z—je_ﬂ"t (3.12)

is used in (3.1) as follows

o 1 . 1 .
L{sinwt} = / [—ewt — —6_3“”] e~ *dt
0

2) 2j
27 LJo 0
_ i . 1 e—(s—jw)t|oo + 1 e—(s+jw)t|oo
27| s—Jjw O s+ jw 0
1 1
2 s —Jjw s+ jw
W
= Tiu (8.13)
n'" Power of time, t"
From (3.1), Laplace transform of ¢™ is
o0
L{m = / the=stdy (3.14)
0
The RHS can be expanded using following equivalence
/ udv = [uv]|y° —/ vdu (3.15)
0 0
where
u=t" dv = e 5dt
du=nt" | v=—Le
By substitution of these expressions on (3.14)
L{y = [w] - / vdu (3.16)
0
—n —st o 1
= © 6° —|—/ —e Stnt" L
s 0 S

[ee)
= 0+ﬁ/ e stdy
S JO

noo(o.
= SL{r
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By repetitive transformation we get into the following expression

n!
Sn—|—1

L{t"} = (3.17)

3.1.2 Properties of Laplace Transforms
Linearity

Linearity requires following two conditions to be satisfied: (1) superposition
and (2) multiplication by a constant. For two time functions fi(¢) and f5(t),
and two coefficients a; and aq, lets derive Laplace transform of the function
ay f1(t) £ asfo(t) using definition in (3.1).

L{ayfi(t) £ asfo(t)} = /Ooo{alfl(t) + ap fo(t) }e™™dl
= /Ooo Oélfl(t)e’_Stdt + /Ooo Oégfg (t)e_Stdt

= m /OOO fi(t)e st dt £+ s /OOO fo(t)e ®tdt
= aL{fi(t)} £ L{fo(t)} (3.18)

which confirms that Laplace transform is linear.

Exponential Scaling

Exponential scaling of a function f(¢) is described by e® f(t). Using (3.1) its
Laplase transform can be obtained as follows

C{etf(t)) = /O et f(4)e St dt

= /O e (sat f(t)at
= F(s—a) (3.19)

Example: Determine the Laplace transform of e=2! cos 3t

Answer: This is an exponential scaling e™* of cos3t. From (3.11), with
w=3, the Laplace transform L{cos 3t} = s/(s* + 3?). When this is exponen-
tially scaled with e=2?!, the resulting Laplace transform is given by (3.19) in
that s is replaced with s — (—2) = s + 2. Therefore,

oy s+ 2 s+ 2
t} = = 2
£Ae ™ cos 3t} (s+2)2+3%2 s24+4s+13 (820
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Time Delay

The time delayed function f(t—T') by time T is illustrated in Fig. (3.3), and
defined as

ft) fleT) |

(a) (b)
Figure 3.3: (a) f(¢) (b) its time delayed version f(t —T')

==t 3T 321

According to (3.1), the Laplace transform of f(¢) is

L{ft—T)} = / e Stdt (3.22)

Lets introduce new time variable 7 = ¢ — T'. This new variable must replace
t-dependent expressions; dt, [;°, and e~* in (3.22). Following expressions (1)
t=7+4+T,(2)dt =dr, (3) when t — 0, then T — —T, and (4) when t — o
then 7 — oo can be used to rewrite the right hand side of (3.22) with 7 as
the time variable

L{f=T)} = [ gy (3.23)
= /_ Tf() T dr / —t ) gr

The first integral on the RHS has to be dropped because Laplace definition
does not consider negative time. Therefore,

L=} = [+ dr (3.24)

— —sT/ f STdT
— fSTF >
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Example: Derive the Laplace transform of the unit pulse py 5 going positive
within the period ¢ € [2,5].

Answer: We don’t have to derived Laplace transform for pulse wave-
forms from the first principles, because we can use time-shifted step
functions to generate pulse waveforms. In fact, if we use u(t — 2), which is
the delayed step occur at t = 2, and subtract from it u(t — 5), which is the
delayed step that appear at ¢ = 5, then what we have is the p, 5 pulse going
positive from ¢ = 2 to t = 5 as shown in Fig.3.4

uft-2}
! e A M S R u{t-2}-u(t-5)
- : { § } ¢ 3 N
1 <
4t —
0 1 3 4 5 6 t

Figure 3.4: Superposition of two step functions to generate a pulse

We can write

P25 = u(t —2) —u(t —5) (3.25)
and use (3.1) on (3.25) to write

L{p2s} = L{u(t = 2)} — L{u(t = 5)} (3.26)
using (3.24)
L{pss} = e ®L{us(t)} — e > L{ug(t)} (3.27)
—231 . 6—551

Multiplication by time, ¢f(¢)

From (3.1), the Laplace transform of a time multiplied function tf(t) is
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L{tf(t)} = /Oootf(t)e—stdt
= [T et

R

d
= ——F(s) (3.28)

In general, it can be shown that

kdk

L{Rf ()} = (=1) S l(s) (3.29)

Laplace Transform of a Function Derivative

Lets use (3.1) on function derivative % as follows

c {%(f)} = /Ooo Cbcd—(tt)e“dt (3.30)

Using the method of integration by parts used in (3.17), lets assume following

substitutions as follows
u=e 5 dv = dfd—(tt)dt
du= —se stdt | v= f(t)

Then, (3.30) can be written using equivalence [5° udv = uv|® — [~ vdu as
follows.

dt 0

= —f(0) + S/OOO f()e=*tdt
= sF(s)— f(0) (3.31)

c{df—(t)} = JOeE = [T = p (s

In general, the Laplace transform of the n'® order derivative %ﬁ is

L {dtl];(f)} _ 8”F<8> . Sn_lf(()) . 8n—2f1(0> L fn—l(()) (332>
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Laplace Transform of a Function Integral

Lets use (3.1) on function integral [ f(7)d7 as follows

c {?} - /:; { /T tzo f(T)dT} st (3.33)

The double integration here is as shown in Fig. 3.5(a). However, the order
of double integration can be changed as shown in Fig. 3.5(b) that traverses
the same surface of integration.

A ‘

T-axls
LY

T-axls
~

Figure 3.5: Double integration: order and corresponding limits

Therefore, we can write (3.33) as follows.

= [ [ sttt

=[SO g

= [" 1o —ée‘“ﬁo}dT
= l/TOOOf(T)eSTdT

s
1

= gF(s) (3.34)
Time Scaling, f(at)

Time scaled function f(at) is a compressed, or stretched version of f(t) by
the scale factor a. If a < 1 function compresses (frequency increases), and if
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a > 1 function stretches (frequency drops). Lets use (3.1) on a time-scaled
function as follows

L{f(at)} = /0 ~ flat)etdt (3.35)

Lets introduce new time variable 7 = at, and replace with it all ¢ terms
in (3.35). We can say that %dt = dr, and when ¢ — 0,7 — 0, and when
t — 00,7 — oo. Then, we have

o0

M)y = - " rmeFar

J
! /Ooo f(r)e aTdr

a
1

= EF(S/CL) (3.36)
Initial Value Theorem

An interesting piece of knowledge can be discovered if we evaluate the limit
of (3.31) when s — oo as follows

limg_soo {/Ooo dfd—it)e_“dt} = lims_o0 {sF(s) — f(0)} (3.37)

The LHS of this expression has e~$! which has zero value as s — co. And, on
the RHS, f(0) is independent of variable s. Therefore, we can write (3.37)
as follows

0 = lims_00sF(s) — f(0) (3.38)

In fact, f(0) can be written alternatively as the value of f(t) as t — 0.
Therefore, we have

limy_of(t) = lims_,0oSsF(s) (3.39)

which tells us that if you have F'(s), and you want to know f(0) all what you
need to do is to determine the limit of F'(s) as s — oo. This way, there is no
need of transforming F'(s) back to f(t) to find out the initial value.

Final Value Theorem

Another very useful piece of knowledge can be discovered if we evaluate the
limit of (3.31) when s — 0 as follows.
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limg_o {/Ooo dfd—it)e_“dt} = limg_0 {sF(s) — f(0)} (3.40)

As e = 1 when s = 0, and also f(0) is independent of s, we can write
(3.40) as follows

/O°° %(tt).ldt — limgo {sF(s)} — f(0) (3.41)
JOIF = limso{sF(s)} — f(0)

floo) = f(0) = lims,o{sF(s)} — f(0)
floo) = limso{sF(s)}

In fact, f(oco) can be written alternatively as the value of f(t) as t — oc.
Therefore, we have

limy oo f(t) = limg_osF(s) (3.42)

which tells us that if you have F(s), and you want to know f(oo) all what you
need to dois to set s = 0 in sF(s). This way, there is no need of transforming
F(s) back to f(t) to determine the final value of the function.

Convolution Integral f(t) * g(¢), the Plant Response

The convolution integral of two time functions r(¢) and g(t) is defined as.

r(t) % g(t) = /0 (gt — 7)dr (3.43)

which is illustrated in Fig.3.6

rit) 4 y{t)4

y{t)
System :
gl)

‘
> i

Figure 3.6: Exogenous input r(7) and its response y(t) after elapsed time
t—T
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Here, r(7) (the instantaneous value of the r(¢)) is an impulsive excitation at
time=7 to the system. The system immediately produces a response y(7),
which, after time interval of ¢ — 7 attains a value of y(t) = r(7)g(t — 1),
where ¢(.) is the unit impulse response of the system. If excitation is a
continuous waveform r(t);0 < ¢ < oo, then total response at time ¢ should
be the integral of the responses of all impulses r(¢);0 < t < ¢, which is
the convolution integral in (3.43). The Laplace transform of a convolution
integral can be determined by operating (3.1) on (3.43) as follows.

LArt)*g(t)} = /OOO {/Ot r(T)g(t — T)dT} e Stdt (3.44)

By changing the order of double integration as explained in Fig.3.5, we can
write

LU g} = [ [T r(n)glt = r)edidr (3.45)
o Jo
Lets introduce new time variable u as follows.

u=t—7|t—=7,u—0
du = dt L — 00, u — 00

Then we can write (3.45) as follows.

LAr{t)«gt)} = /Ooo /Ooo T(T)g(u)efs(”“)dudT

Y(s) = / T’(T)B_STdT/ g(u)e *"du
0 0
Y(s) = R(s)G(s) (3.46)
This shows that the Laplace transform of the system’s response Y (s) is given
by the product of Laplace transform of excitation R(s) and Laplace transform

of system’s impulse transfer function, which we name as the transfer function
of the system G(s).

3.2 Response using Laplace Transforms

3.2.1 First Order System (RC Circuit)

Lets look at how we could use Laplace transforms to solve system model and
obtain system response efficiently. To demonstrate this, we go back to the
model (2.3) in chapter 2.1 and try to apply Laplace techniques to solve it for
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system response. Assuming a step supply voltage vs(t) = Vius(t), lets take
Laplace transform of both sides using (3.31) as follows

sV (s) —v(0) +aV(s) = sz%

(s+a)V(s) = v(0)+ bVS%
1 b
s+ av(()) i s(s+a)

V(s) = Vs (3.47)
We could evaluate inverse Laplace transform of (3.47) in two ways using
partial fractions or convolution integral. Lets workout the two approaches
as follows.

Partial Fractions Method:
Lets take partial fractions of (3.47) as follows

Vi(s) = — v(o>+9<1— ! )V (3.48)

s+a a\s s+a
of which inverse Laplace transform is

v(t) = v(0)e ™ + SVS (1 - e_at) (3.49)

which is the same response that has been obtained earlier in (2.12).

Convolution Integral Method:

We can identify the second term of (3.47) as a product of two Laplace trans-
forms % and sj%a for which the inverse Laplace transform is the convolution
integral of the two inverse Laplace transforms u,(t) and e~*. Therefore, the
total response can be written as follows.

¢
v(t) = v(0)e ™ + sz/ e Tug(t — 7)dr
0

t
— 0(0)e= 4 bV, / e~ 1dr
0

—b
= v(0)e ™ + FVSB_M%

— (0)e + SVS (1- ) (3.50)

which is the same response that has been obtained earlier in (2.12).



32 Laplace Transforms

3.2.2 Simulation
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Figure 3.7: RC circuit response

For Ry = Ry=1kf2, and C'=200uF", and assuming that there is a voltage
across the capacitor initially v(0)=2[V], the homogeneous, exogenous, and
total responses are illustrated in Fig.3.7.

3.2.3 Second Order System: shock-absorber

Lets look at the second order shock-absorber dynamics in (2.2), and re-write
it as follows

§(t) + 204(t) + py(t) = nf(t) (3.51)
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where 20 = %, p= %, and n = % Using Laplace transforms of a derivative
(3.32), we can transform above equation into Laplace domain as follows

s?Y () — sy(0) — y/(0) + 20[sY (s) — y(0)] + pY (s) = nF(s)

(s + 205+ p)Y (s) — y(0)s — [20y(0) +4'(0)] = nF(s)
o= ML SO by

Using the denominator expression, we generate the characteristic equation
of the system A(s) = s* + 20s + p = 0 of which the roots dictate system’s
characteristics (therefore called the characteristic equation). The solutions,
or roots of the characteristic equation are also called the poles of the system.
Due to the quadratic nature of the characteristic equation, there are three
possibilities for the nature of the roots: (1) real distinct, (2) real coinci-
dent, and (3) complex. Lets analyze how the system response is dictated
by poles in these three possibilities.

Case 1 02 — p > 0 (b > 2vmk) = real, negative, distinct poles:

Lets introduce K; = y(0), Ky = 20y(0) + 3'(0). The two distinct, real poles
aq and oy are

a, 00 = —0 £4/o2 —p (3.53)

Then, (3.52) can be written as

Kis+ Ky Ui

(s—aq)(s—as) (s—a1)(s— az)

Y(s) =

which, can be expanded using partial fractions as follows

Y(s) = { (;Plaﬁ + (SPPZQ) } + ni G f?’al) r 54042) } F(s)

- +1
(s—a1)  (s—a2) (s — o) S — ()
where the residues P, = @it p — 04K po— L and py = L
ar—ag ! az—aq ar—az’ az—Q1

can be determined by partial fraction cover up method, which is demon-
strated below for the determination of P; only.



34 Laplace Transforms

K K
limgs_ya, (s — aq) 15 + Ao = limg_ o, (s —aq)
(s —a1)(s — as)
P P, }
+
{(3 —a1)  (s—ao)
K K P.

limg_a, fast R lims_ya, § P1 + (s — 041)—2
(s —a2) (s —a2)

Kion + Ky _p

a1 — Q9 !

The cover up method can be generalized as follows for an expression

K(s)
(S—Otl)(s—al)...(Ss_ai)m(s_an) as fO].lOWS

) {(3 —oq)(s —a1) '['('(?3— )+ (s — Oén>} (8.56)

Pi = lims—mi(s -

Convolution Integral Method: We can clearly notice in (3.55) that the
first two terms on the RHS are Laplace transforms of exponential functions
as derived in (3.9), whereas each of the last two terms is a product of two
Laplace transforms, which becomes a convolution integral in time domain as
shown in (3.45). Therefore, the total solution is given by

t t
y(t) = Pleo‘lt+Pge°‘2t—|—nP3/ €a1(t_T)f(T)dT—|—T]P4/ ea2(t_T)f(7')dT (3.57)
0 0

which can be solved for known forcing functions f(7). Any function can
be synthesized by superimposing a set of pulse waveforms of specific set-in
times and amplitude, therefore, lets determine the response in (3.57) for a
step function f(7) = Aug(7). As Aug(7) = A;0 < 7, (3.57) can be written
as

t t
y(t> = Plealt + P2€042t + ’)7P3/ 6a1(t—7)Ad7— + nP4/ 6a2(t_7-)AdT
0 0
t t
= Pie + et +?7P3€a1t/ e~ Adr +?7P46°‘2t/ 6= Adr
0 0
NPy Ae™? NP, Aeo2t
(071 1

aqt oot —aq 7|t —aaT |t
= Pt + Pyt — e M7, e 7,
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Py Aet Pye®2t A
= Pty pecat - T3C (pmaat gy TTAC Fant )
(03] (0%}
P A PA
= Pt 4 P2t — nes (1 —eMh) — hras (1 —e™t)
(051 )
PP AP, AP,
(B Y (R T g (4 T
a1 Qg aq Q2

(3.58)

Here, the first term on the RHS is time-independent, and is the steady
state response, whereas the last two terms are time-decaying, and together
form the transient response. Moreover, the first term depends entirely on
P5 and P telling us that the steady state response depends entirely on the
forcing function. It is also interesting to notice that the last two terms depend
on all four residues P, P, P35, and P, indicating that the transient response
is contributed by the initial conditions of the response as well as the forcing
function.

If we are interested in knowing what will eventually happen to the
response only steady state response is needed to be determined. On the
other hand, if we are interested in knowing how the shock-absorber squeezes,
and how long it will take to become steady, then transient response has to
be determined.

Partial Fraction Method: If you find it difficult to work through con-
volution integral you can still solve (3.54) algebraically in Laplace domain
using partial fractioning method. In fact, Laplace transforms help solving
differential equations while avoiding integration and differentiation. For the
step function f(t) = Aug(t) the Laplace transform is F(s) = 2, as derived
in (3.8). Then we can write (3.54) as follows

B Kis+ Ky n é

Y(s) = (s—ap)(s—as) (s—ai)(s—ay)s (3.59)
B Py Py 1 Q2 Qs
- et (et )

where )1 = m,QQ = m,Qg = ﬁ can be determined using
the cover up method demonstrated in (3.56). It is interesting to see that all
terms on the RHS are familiar Laplace transforms. The first four terms came
from exponential functions, whereas the last term is the Laplace transform
of a step function. Therefore, the total response is given by

y(t) = P+ Pye™ +nA (Qleo‘lt + Qge‘”t) + nAQs
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= nAQ?) + (P1 + nAQl)eo‘lt + (P2 + HAQ2>€a2t (360)

which is in fact the same response in (3.58), which was obtained using con-
volution integral. Now that we have determined the total response using
convolution integralmethod and Laplace transform nethod, we can conclude
that the algebraic method of solving ODEs using Laplace transforms is very
convenient and effective.

3.2.4 Simulation

Lets assume the shock-absorber parameters as follows: damping stiffness
k=125[N/cm], which means that a 125N force is required to squeeze the
spring by 1[cm], and damping constant b=700 [Ns/cm], which means that
1[cm/s] speed is opposed by a 7T00[N] force. Then, from (3.51) 0=7, p=2.5,
and n=0.2. We have in this case real distinct pair of poles of the character-
istic equation as a;=-0.181 and ay=-13.819. This combination of stronger
damping over spring stiffness is known as over damped, in which case mo-
tion is overly suppressed by the damper. Lets also assume some non-zero
initial conditions, that is, at t=0, the shock absorber was not at rest but
was squeezing at a position y(0)=-1.5[cm] with a speed y'(0)=-1.8[cm/s].
The homogeneous, exogenous, and total responses of the shock-absorber are
illustrated in Fig.3.8.
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Figure 3.8: Shock absorber squeezing with the 50kg person getting on board
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Case 2 ¢ — p =0, (b= 2v/mk) = real, negative coincident poles:

In this case, the two roots are a; = ap = a = —o. Then, (3.52) can be
written as

_ K18+K2 n
Y(s) (s — a)? (s — a)?

Using partial fraction, this can be resolved into

F(s) (3.61)

(s —« s—a)?  (s—a

Y(s):{(81j52)2+ o )}+77{( frs B )}F(s) (3.62)

where the residues Ps = %, Ps = —%, P, = é, and Py = —é can be
determined by equating coefficients. Again, we recognize within the first set
of curly braces the homogeneous response, whereas the exogenous response
can be recognized within the second set of culy braces. We can use f(t) =
Aug(t) whose Laplace transform is F/(s) = AL and determine the response

as follows

o P53 P6 P7S Pg 1
R e R | R (e AR v P
S 1 1 1
= P5 2—|—P6 +77AP742+7]AP8

s(s — )

(s — )

Here, the second term on the RHS is familiar to us as the Laplace transform
of e as derived in (3.9). And, the third term is the derivative of the second
term with respect to s, therefore, in time domain third term appears as
te® according to (3.28). The first term is identical to third term except
for that s in the numerator, which tells us that in time domain it should
be %l +te™|i—g = (1 + at)e™ as we have derived in (3.31). Finally, the
fourth term on the RHS is identical to the second term except for that s in
the denominator, which tells us that in time domain it is the time integral of
the second term; fj e™dl = Le®!|l = 1(e*" —1). Therefore, we can synthesize

the total response as follows. '

(s —a) (s — )

1
y(t) = Ps(1+ Oét)eat + Pye™ 4+ nAPste™ + 77AP8—(€at 1)
(0%

AP n (UAPS
a a

+ P+ P5> e 4 (nAPs + Psa)te® (3.64)
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3.2.5 Simulation

Using the same value for damping b=700[Ns/cm|, we determine
k =2450[N/cm] using b = 2vkm. Then, the two poles of the character-
istic equation coincide at a=-7. The homogeneous, exogenous, and the total
responses are illustrated in Fig.3.9
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Figure 3.9: Shock absorber response when b = 2v/km (real, negative, and
coincident poles)

We can compare this response with the one in Fig.3.8 in that stiffness was
lower (k=125, so that the two poles were real and distinct), and understand
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that the response stabilizes very quickly, with a little squeezing. This condi-
tion where the two poles are coincident is known as critically damped.
Other than comparing response, we may also want to take a closer look at
the response then the system is critically damped as, which is illustrated in
Fig.3.10
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Figure 3.10: Closer look at the critically damped response of Fig.3.9

Case 3: 02— p <0, b < 2vkm = complex conjugate pair of poles:

In this case, the characteristic equation has a pair of complex conjugate poles
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ag, 09 = —0 + jw (3.65)

where w = /p — 02. Then, (3.52) can be written for a step input F(s) =
Aug(t) as follows

0)s + [20y(0) + ¥'(0
Y(s) = y( )8_[‘0'.@() CAC)I 1 _p(s)
(s+o—jw)(s+o+jw) (s+o0—jw)(s+o+jw)
Kis+ Ko n
= — + — F
Grof—GoP v R Gep
5 1 1 A
- K— 4K Z
1(s+0)2+w2+ 2(s+a)2+w2+n(s+a)2+w23
s+o o w Ky w
(s+0)+w? w(s+0)?+w? w (s+0)?+w?
A
! - (3.66)

w(s+o)2+uw?s

The first term on the RHS clearly is a Laplace transform of a coswt function
as derived in (3.11), however, with s being replaced by s + ¢, which is a
result of an exponential scaling e~ as derived in (3.19). The second and
third terms are Laplace transforms of sin wt, but again exponentially scaled
by e~ ?t. The fourth term looks like Laplace transform of an exponentially
scalled function e?!sinwt, however, the s in the denominator tells us that
it should be the integral of this function in [ e=?*sinwtdt. This integral is
evaluated in Appendix A. Therefore, we can synthesize the response y(t) as
follows.

K K
y(t) = Kie " coswt — 219 ot ginwt + 2t ginwt
w w
At
+77_ / et sin witdt
w Jo
Ky — oK
= ¢ {K1 coswt + 4< 2 — oK) sinwt}
w
nA w ol
+U {w2 =i e 7 sin(wt + ¢E)}
= Ke %'sin(wt + ¢p)
nA w ot
w {w2 oz ¢ st ¢E)} (3.67)

where K = \/Klz + %ﬁ, ¢ = tan~! ( Kiw ), and ¢p = tan~! (%)

Ko—0oKq
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3.2.6 Simulation

By reducing damping b = 300 while keeping stiffness unchanged at k& = 2450
characteristic equation assumes a pair of complex conjugate poles aq, as =
—3 4 76.3. Under this condition, ¢y=-2.16[rad] ,and ¢r=0.32[rad]. Using
the same initial conditions previously used, and for a 50[kg] person getting
on board, the shock-absorber squeezes as illustrated in Fig.3.11.
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Figure 3.11: Shock-absorber response when it is under damped

where we can notice the decaying oscillatory behavior, which is called the
damped oscillation. The imaginary part of the poles cause the oscillation
whereas the -ve real part of the poles cause the decaying of the oscillation.
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3.3 Transfer Function

If we cautiously observe the responses in Fig.3.7, Fig.3.8, Fig.3.9, Fig.3.10,
and Fig.3.11 we witness the decaying nature of the homogeneous response,
while the systems response gradually being over taken by the exogenous
response. Therefore, it is justifiable that the homogeneous response is often
dropped in modeling of systems. This is equivalent to assuming zero initial
conditions y(0) = 3/(0).. = 0, which is agreed upon by most practical systems
that often stay at rest initially. Furthermore, in control system design, we
are more interested in knowing how the exogenous input affects the response.
Therefore, lets drop the homogeneous part of the RC circuit response in (3.47)
and obtain the folowing relationship.

b

V) = 2
Vis) b
Vi(s)  s+a
Gls) = Sia (3.68)

where (G(s) denotes the transfer function of the system, which tells how the
exogenous response is created by the exogenous input. The system can now
be illustrated by the block diagram in Fig.3.12.

V.(s) Cb vs)
s+a >

Figure 3.12: Transfer function block diagram of a first order system (RC
circuit)

Similar way, we can reduce the shock absorber response in (3.52) and write
the transfer function as follows

_ Ui
V() = Fioest o
Yis) _ U
F(s) s2+20s+p
_ Ui
G(s) = PR F—— (3.69)

The system can be illustrated by the following block diagram in Fig.3.13
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Figure 3.13: Transfer function block diagram of a second order system (shock
absorber)

Example: Transfer Function of a Robot Link

wi{t)

Figure 3.14: Robot arm and the joint motor

Figure 3.14 shows a robot arm and its joint motor, which is excited
with a variable DC voltage v(t). We need to find out how the arm position
0(t) changes when the voltage v(t) changes, i.e., we need to determine the
transfer function %Z—;. Lets first introduce the variables and parameters
listed up on the tab%e 3.1.

For the electrical circuit we can write v(t) = iR+ LdiT(ttl +wvp(t). However, we
know that vp(t) = kp(0),,. Therefore, by substitution v(t) = iR + Ldfd—(tt) +

kp(0)m, which in Laplace domain is

V(s) = RI(s)+ Lsl(s) + kpsO(s)
[R+ Ls]I(s) + kpsO.,(s) (3.70)

total inertia on the motor shaft is the motor inertia plus the load inertia,
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v(t): armature voltage[V] i(t): armature current[A]
Jm: motor inertia [Kgm?] k;: torque constant [Nm/A]
n: gear ration 7 load shaft torque [Kgm?|

L: armature inductance [Vs/A] wp(t): back electromotive force [V]

by,: motor viscous damping 0,,(t): motor shaft speed [rad/s|
constant [Nms/rad]

Ji: arm inertia [kgm?] R: armature resistance [
kp: motor back emf constant [Vs/rad] Tm: motor shaft torque [Nm]
0, (t):motor shaft position [rad] by: viscous damping constant

of the arm [Nms/rad]
0(t): arm position [rad]

Table 3.1: Parameters and variables of the robot arm system

which is coupled through a n : 1 reduction gear. Therefore, equivalent iner-
tia on the motor shaft is J., = Jm+;—2Jl. Similarly, equivalent viscous friction
coefficient on the motor shaft is b., = by, + n%bl. Torque on the motor shaft
overcomes the friction (velocity dependent), and drives the inertia (accelera-
tion depends) as described by 7, (£) = begf(t) + Jegbm(t). However, we know
that 7,,(t) = kyi(t). Therefore, by substitution k.i(t) = begf(t) + Jegbm (1),
which in Laplace domain, gives the following expression for /(s)

I(s) = [Jeq5*Om(8) + begsOm(s)]

1
k-
1
= [JeqS + beg|sOm () (3.71)

By substitution from (3.71) to (3.70) for I(s)

) = ki(R - 18) (o + beg)5Om(s) + ksOrn(s)

kV(s) = [(}2 + L8)(JeqS + beq) + krkp]sOm(s)

m(s) k.
V(s)  [(R+ L5)(Jugs + beg) + krkp]s (3.72)
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As we know 6,,(t) = nd(t), we can write the required transfer function as

@(S) kT/n

V(s) [(R+ Ls)(JegS + beg) + krkps]s

- /1 (3.73)
 LJeyS® 4 (Lbeg + RJey)s® + (Rbey + kpky)s ‘

3.3.1 Experimental Determination of Transfer Func-
tion

o
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Figure 3.15: Unit impulse response of a plant

As derived in (3.45), exogenous response of the system Y (s) = G(s)R(s).
If we give a unit impulse input 7(¢) = 6(¢) = R(s) = 1 as shown in Fig.3.15,
then

Y (s)|rs)=1 = G(s) (3.74)

which says that the system transfer function is the Laplace transform of the
unit impulse response. This provides a very useful experimental method to
determine the transfer function of a system. A unit impulse 6(¢) is given
to the system and the response g(t) is recorded as shown in Fig.3.15. The
Laplace transform of this response is the transfer function of the system

G(s) = L{g(t)}-

3.4 Summary and Conclusion

Using Laplace transforms, differential equations (time domain) can be
converted into algebraic equations in s-domain. These algebraic equations
can be handled and manipulated much easier than dealing with their
corresponding differential equations. We perform algebraic manipulations in
s domain in such a way that we recognize familiar Laplace transforms, which
help us to directly write down the solution in time-domain. In Matlab,
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systems can be easily constructed and their responses can be simulated
quickly and effectively.

System’s homogeneous response dies out with time, and most systems start
with zero initial conditions. Therefore, we can reasonably drop the homo-
geneous response, and derive the relationship between exogenous input and
response, which is known the transfer function of the system.



