Chapter 2

System Model and Response

2.1 Mechanical System: Vehicle Shock-
Absorber

Lets look at the motor cycle shock absorber mechanism shown in Fig.2.1, and
try to understand its operation, and develop a mathematical model of it. We
know by experience that shock-absorber absorbs vibrations generated by the
irregularities on the road so that the rider does not feel such uncomfortable
vibrations. The shock absorber has parallel arrangement of a spring k£ and a
damper b connected between wheel and the seat as shown in Fig.2.1.

(b)

Figure 2.1: (a) Motorcycle shock absorber, and (b) Equivalent damper spring
mechanism

As shown in Fig.2.2, when the rider gets on board a downward force f(t) =
mg is applied on the shock-absorber. This force squeezes the spring-damper
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mechanism, and therefore makes the spring and damper generate opposing
forces ky(t) and by(t) respectively, where k[N /m] is the spring constant, and
b[N/ms™!] is the damper coefficient. The free body diagram of the mass-
spring-damper is shown in Fig.2.2(b).
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Figure 2.2: (a) Shock absorber forces (b), and (¢) Free body diagram

According to the free body diagram there is an unbalanced upward force
f — ky(t) — by(t), which makes an upward acceleration () on the rider as
given by

mi(t) = f — ky(t) — by(t) (2.1)

Hence, the acceleration felt by the rider due to the bump on the road is given
by the following differential equation

50+ i)+ y(t) = [0 2.2

2.2 An Electrical System: RC Circuit

Lets look at the electrical circuit shown in Fig.2.3 and try to mathemat-
ically model the voltage across the capacitor. Basic components of elec-
trical circuits are resisters (v(t) = i(t)R), capacitors (i(t) = co(t)), and
inductors(v(t) = Li(t)). Lets consider the RC' circuit shown below, and try
to model the voltage v(t) across the capacitor. We can now apply either Kir-
choft’s current law (3,407 = 0), which says that the total current entering
a node is equal to the total current leaving the node. Or else we could use
Kirchoff’s voltage law (3., v = 0), which says that all voltages around a
loop adds to zero. Lets apply the current law as follows
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Figure 2.3: (a) Simple RC circuit and (b) currents at node A
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where a = %EQRC%’ and b = RlC This gives us the ordinary differential

equation which describes how voltage across the capacitor changes in
response of the supply voltage. However, we should not forget that we have
assumed a constant capacitance C, which means that either vy(¢) has to
be DC source, or an AC supply with a very low frequency compared with
charging and discharging of the capacitor.

A detailed account on electric and mechanical system modeling can be
found in [4]. We can conclude that systems can be modeled by ordinary
differential equations(ODE). Once we have derived the system’s ODE we
must solve it to get the system’s response, i.e., y(t) in the shock-absorber,
and v(t) in the RC' circuit. Therefore, lets try to solve differential equations
(2.2) and (2.3).
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2.3 Response from Model Differential Equa-
tions

The response of a system is given by the solution of the systems ODE. There

are two parts in the solution of an ODE, namely, (1) initial condition re-

sponse, and (2) steady state response. Initial condition response is the part

of the response that is due to the input ant output values at ¢ = 0. Steady
state response is the response when the system attains steady behavior.

2.3.1 First Order System (RC Circuit)

The response of first order RC' circuit in (2.3) is the sun of complementary
function vor(t), and particular integral vpr(t) as follows

U(t) = ’UCF(t) + Up[(t) (24)

The initial condition response v;.(t) is obtained by removing excitation func-
tion vy() from (2.3) as follows.

der(t) + aver(t) = 0 (2.5)

Lets assume vop(t) = Ae® as a solution. If it is in fact a solution it must
satisfy (2.5). Lets substitute vep(t), and 0cp(t) = ade™ onto (2.5) as fol-
lows.

aAe™ +ade™ = 0
A (a+a) = 0 (2.6)
which is satisfied if & = —a. Therefore, the initial condition solution is given
by
vep(t) = Ae™™ (2.7)

However, we still do not know the value of coefficient A, which we will find out
later. The steady state response is obtained by removing response derivatives
from (2.3) as follows

avpr(t) = bug(t)
UP](t) = Evs(t) (28)
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Then, the total response is the sum of (2.7) and (2.8)

v(t) = Ae™™ + gvs(t) (2.9)

Now we can find an expression for coefficient A by writing (2.8) at ¢t = 0 as
follows.

A = v(0) — —v4(0) (2.10)

Therefore, the total response is

v(t) = {U(O) — 208(0)} e gvs(t) (2.11)

This shows that initial condition solution contains values of both v(t) and
vs(t) at t = 0, and it also shows that initial condition response decays with
time. Total response can be solved for a known forcing function. Lets assume
vs(t) = V4[V], a DC voltage source, for which the total response is as follows

o(t) = {U(O) — SVS} e "+
= v(0)e ™ + by, {1—e} (2.12)

in which the first term on the right RHS can be identified as the homogeneous
response(due to output itself) whereas the second term on the RHS can be
identified as the exogenous response (due to external input)

2.3.2 Second Order System: Shock-Absorber

The response y(t) of shock-absorber dynamics in (2.2) is the summation of the
complementary function(homogeneous response) yor(t), and the particular
integral(exogeneous response) yp;(t)

y(t) = yor(t) +ypr(t) (2.13)
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Homogeneous Response (Complementary Function)

The homogeneous part of the system differential equation (2.2) is obtained
by disregarding the external forcing function (f(¢) = 0) as follows

Jor(t) + 209cr(l) + pycr(t) =0 (2.14)
where 20 = b/m, and p = k/m. We can immediately notice that this ODE
is satisfied by yor(t) = e and its derivatives gop(t) = Aae™ and §op(t) =
Aa?e®. The corresponding value of the exponent o can be determined by
substituting the candidate complementary function and its derivatives onto
the homogeneous equation as follows

Ac?e™ 4 20 Ace™ + pAe™ = 0
Ae (o +20a+p) = 0
o’ +20a+p = 0 (2.15)

This quadratic equation is known as the characteristic equation of the
system, as its solutions, which are called the poles of the system determines
the characteristics of the system. We notice here that though we start with
a single candidate complementary function, the homogeneous equation is
satisfied by two such candidate functions affiliated with the two poles oy, ai
of the characteristic equation. It is also noticeable that there can be three
different possible response corresponding to the nature of the poles being,
real distinct, real coincident, or complex.

case 1: 0% — p > 0: In this case, aj, s = —0 £ /02 — p are real(-ve) and
distinct poles. The homogeneous response in this case is given by a general
complementary function as follows

yor(t) = AotV P Ay elmomVor-plt (2.16)
in that the second term has a greater negative exponent, thus, decays faster

with time than the first term.

case 2: 02 — p = 0 : In this case, the two poles are coincident a; = ay =
a = —o. The candidate complementary function is obtained by time multi-

plication of one of the member solutions tested in the earlier case.

yor(t) = Are” 7" + Agte™ (2.17)

case 3: 02 — p < 0: In this case, ay, a0 = —0 + jw;j = v/—1 is a complex
conjugate pair, where w = /p — 02 The two member solutions have a
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decay factor e~ and oscillatory factor e*/“! and in general, coswt = (/! +
e 7Y /2 and sinwt = (/' — ¢77¥!) /25 both qualify as solutions. Therefore,

general homogeneous response is given by

yor(t) = e 7P coswt + Pysinwt) (2.18)
Ae” " cos(wt — ¢)

Exogenous Response (Particular Integral)

Exogenous response is the solution of (2.2) due to the external forcing func-
tion alone. Obviously, the particular solution depends on the nature of the
forcing function f(¢). It can be shown by differentiation and substitution
onto (2.2) that following exogenous responses are valid for the given forcing
functions

O e (2.19)
" = ag+a; + +a,t"
e = Ae™
coswt = P, coswt+ P,sinwt
sinwt = —do—
coswt +sinwt = —do—

Total Response

The total response (2.13) of the second order dynamics is assembled by
adding homogeneous response (2.16) if roots of the characteristic equation
are real, or (2.17) if roots are real and repeated, or (2.18) if roots is a complex
conjugate pair, with the exogenous response that can be derived from the
candidate solutions given in (2.19). The coefficients of these responses are
to be determined using initial conditions y(0), and 3/(0). This is the lengthy
procedure of finding the system’s total response

2.4 Linearization

A system is linear if it satisfies the theory of superposition, i.e., f(z1 +z2) =
f(z1) + f(z2). A nonlinear system (a function) does not satisfy superposi-
tion as illustrated in Fig.2.4. Many systems (electromechanical, hydraulic,
pneumatic, etc.) involve nonlinear behaviors such as
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Figure 2.4: A nonlinear function f(z; + x2) # f(x1) + f(22) does not satisfy
the theory of superposition

e output may saturate for large inputs

e there may be dead zones where there is no output at all such as backlash
of mechanical gears

Systems which are generally recognized as linear are in fact linear within
the normal signal magnitudes (normal operation), however, under high val-
ues of signals they often show nonlinear behaviors. Most physical systems
are inherently nonlinear by very nature. Nevertheless, we dislike to accept
nonlinearities because it makes life very difficult for the control engineer.
Therefore, most industrial systems are designed to operate within the close
vicinity of a predetermined operating point around which plant model can be
approximated with a linear model. Lets say y = f(z) is a nonlinear function
and we want to find out the linearized model of it around the operating point
(Z). Lets use Taylor series and write the function around Z as follows

d 1 d?
v = 1@+ D@+ g a2
v o= 1@+ D) (2.20)

where y* is the approximated linear model of the plant. The approximation
is justifies because of the fact that all higher order terms of (x — Z = dx)
getting increasingly smaller.

2.4.1 Example

Problem: Use the nonlinear function z = xy, and determine the linear
approximation around the operating point (Z,y) = (6,11). If the plant
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operates within the dynamic range of 5 < x < 7, and 10 < y < 12 determine
the error of approximation when the plant operates at (7,12).
Solution: We can determine partial derivatives of z as g—; =y, and g—z =
From (2.20),
0z 0z
¥ =z + — r—06)+ — —11
|(6,11) ax|(6,11)( )+ ayl(ﬁ,ll)(y )

= 6 x 11 +y|@1)(z —6) + x|611)(y — 11)
— 66+ 11(z —6) + 6(y — 11)
= 11z + 6y — 66 (2.21)

The error e of approximation at (7,12) is

€|(7,12) = Z|(7,12) - Z*|(7,12)

SCy|(7712) — (1156 + 6y — 66)|(7712)

= Tx12—(11x746x 12— 66)

= 84— (77—"7T2—66)

=1 (2.22)

The percentage error is e|(7,12)% = ez o 100% = i x 100% = 1.19%.

2*|(6,11)

2.5 Summary and Conclusion

We use laws of physics such as Newton’s laws and Kirchoff’s laws, and derive
the model of dynamic systems. The modeling process almost always result
in an ordinary differential equation. The model differential equation can be
solved to determine system’s response. The solution has two parts; one de-
scribing how the response change by itself, and the other part shows how the
response change due to exogenous inputs. To solve differential equations can
be troublesome, specially when the system order is high. Therefore mathe-
matical tools that can solve differential equations conveniently are needed.
The next chapter on Laplace transforms will describe such methods using
Laplace transforms.



