

Department of Electronics and Telecommunication Engineering University of Moratuwa Sri Lanka

Semester I Examination 2005 - B.Sc. Engineering Level 4

EN 407 Robotics

Answer all questions Time allowed: **Two hours**

[Q1]. $\{A\}$ and $\{B\}$ are two coincident coordinate frames. While $\{A\}$ stays still, $\{B\}$ rotates about x, z, and y fixed axes of ${A}$ by angles α , γ , and β in that respect. Frame ${B}$ also undergoes a translation that brings its origin to the position ${}^AP_{Bo}$ in frame {A}.

- (a) Derive the expression for the rotation matrix $^{A}_{B}R$ in terms of basic rotation matrices.
- (b) Construct the homogeneous transformation matrix $^{A}_{B}T$ in terms of $^{A}_{B}R$ and $^{A}P_{Bo}$
- (c) Sketch the two coordinate frames and derive an expression for $\frac{B}{A}T$ *A*
- (d) Calculate ${}_{B}^{A}T$ when $\alpha = 60^{\circ}, \gamma = -30^{\circ}, \beta = 90^{\circ}, \text{ and } {}^{A}P_{B} = [1,1,-2]^{T}$ and determine ${}^{A}Q$ when ${}^{B}Q = [1,0,2]^{T}$

Note: The basic rotation matrices are:

$$
R_X(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{bmatrix} R_Y(\theta) = \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix} R_Z(\theta) = \begin{bmatrix} c\theta & -s\theta & 0 \\ s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

[Q2]. Shown below are the link coordinate frames {i-1} and {i} of a serial link manipulator

- (a) Construct an expression for the link transformation matrix $i^{-1}T$ in terms of basic rotation matrices (R's) and basic translation matrices (D's).
- (b) The DH link-joint parameters of the first three links of PUMA560 robot manipulator are given in the table below. Write expressions for ${}^{0}_{1}T$, ${}^{1}_{2}T$, and ${}^{2}_{3}T$ in terms of basic rotation matrices and basic translation matrices (**Note**: specify respective angles, axes of rotation, translations and direction of translations. However, it is not required to compute matrix elements or to multiply matrices).

(c) Using the template for $i^{-1}T$, calculate the homogeneous transformation matrices T_1^0T , T_2^1T , T_3^2T , and ${}^{0}_{3}T$ when PUMA 560 robot is at $[90^0, 0^0, 60^0]$ arm configuration.

Note: The template for $i^{-1}T$ is

$$
{}_{i}^{i-1}T = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}c\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

- (d) Determine the origin of frame {3} with respect to frame {1}.
- **[Q3]**. The manipulator shown below is in static equilibrium while exerting a force f_3 and a moment η_3 against a rigid wall.

(a) Sketch the manipulator and draw the link coordinate frames $\{0\}, \{1\}, \{2\},$ and $\{3\}$ [**Hint**: Locate {3} at the extreme end (point of contact) of the robot manipulator]

- (a) Derive expressions for f_2 , η_2 , f_1 , and η_1 in terms of f_3 , η_3 [Note: the rotation matrices ${}^1_R R$, ${}^2_R R$ and position vectors 1P_2 2P_3 are known quantities].
- (b) The manipulator has to exert a force of 10N normal to the wall. Calculate f_2 , η_2 , η_1 , and then calculate the required torques τ_1 and τ_2 at the two joints in order to maintain static equilibrium.

[Q4]. Figure below shows a robot manipulator used for window washing. The manipulator has to apply and maintain a constant predetermined force normal to the window while moving the washing sponge over the entire window surface.

- (a) Identify the force/position constraints in X,Y,Z directions.
- (b) Shown below is a hybrid force/position robot controller for the above application. Construct the selection matrices ψ_p and ψ_f .

- (c) The end-effector compliant motion is governed by the relationship $F = K \delta x$, where *F* is the force to be generated against δx , the end-effector deflection in 3-space, and K is the endeffector stiffness. Starting from this relationship, derive the expression for corresponding joint torques $\tau = J^T(\theta)KJ(\theta)\delta\theta$ required to implement the compliant motion of the end-effector.
- (d) Describe "active compliance" and "passive compliance" in robot force control